

Using AI-based NiCATS System to Evaluate Student

Comprehension in Introductory Computer

Programming Courses

Bradley Boswell

Computer Science

Georgia Southern University

Statesboro, USA

bb05758@georgiasouthern.edu

Andrew Sanders

Computer Science

Georgia Southern University

Statesboro, USA

as13770@georgiasouthern.edu

Andrew Allen

Computer Science

Georgia Southern University

Statesboro, USA

andrewallen@georgiasouthern.edu

Gursimran Singh Walia

Computer Science

Augusta University

Augusta, USA
gwalia@augusta.edu

Md Shakil Hossain

Computer Science

Georgia Southern University

Statesboro, USA

mh34922@georgiasouthern.edu

Abstract—This Research to Practice Full Paper presents the

use of data collected by our Non-Intrusive Classroom Attention

Tracking System (NiCATS) to evaluate student comprehension.

Quantifying students' cognitive processes in classrooms in a non-

intrusive way is challenging. By analyzing various aspects of the

eye metrics against defined regions of interest (ROI), instructors

can better understand students’ cognitive processes as they

acquire new knowledge. Eye-tracking studies primarily define

ROIs based on commonly used metrics (source code complexity,

significant fixation durations, etc.). While helpful, these metrics,

when used independently, do not accurately represent their

comprehension patterns. This paper contributes an alternative,

multilayered approach for calculating gaze metrics against

automatically defined ROIs. The work utilizes the AI-based Non-

Intrusive Classroom Attention Tracking System (NiCATS -

developed by the researchers), collecting raw-gaze data in real-

time as information is presented on a computer screen. This paper

reports the results of a study in which undergraduate students in

a CS programming course were asked to identify defects seeded in

Java programs. Each JAVA program included its own unique sets

of ROIS defined using two different granularities: lexer-based and

line-based. The ROI sets were then used to calculate relevant eye

metrics in the context of each ROI layout. The results of the eye

metric analysis at specific ROIs w.r.t their code review task

provide insights into the cognitive processes students undergo

when trying to comprehend new material. Subdividing this region

into lexer-based regions, we determined “content topics” students

struggled with (e.g., using complex data types) in a specific area.

This feedback is valuable to the instructor as it enables the ability

to identify hard-to-comprehend content topics post-hoc and gives

the ability to validate student learning in the classroom. While this

experiment focused on students in introductory programming

courses, we intend to conduct experiments in other learning

settings where students are expected to read material on a

computer screen or solve actual problems. To summarize, the

analysis of these eye metrics using more fine-grained ROIs (lexer-

based, line-based) as an extension of complexity-based ROIs

provides instructors with deeper insights into the cognitive

processes used by students when compared to the current state-of-

the-art techniques.

Keywords—Gaze Tracking, Knowledge Gain, Code

Comprehension

I. INTRODUCTION

One of the open-ended research problems in Computer
Science education is to gauge student comprehension in
classrooms (either post-hoc or real-time). While this transcends
all classrooms, it is a bigger issue in a computer science lab
where students are working behind monitors, thus limiting
student-teacher visual interactions. Traditional evaluation like
test or quiz results can indicate whether students have
understood the material or not, but this lacks insight into how
they have approached the solution. This makes it difficult for
educators to identify the causes behind why students may be
misunderstanding the presented information. By identifying
these insights and issues early on, instructors would be able to
provide better lectures and guidance, especially for struggling
students.

Prior researchers have utilized machine learning and
computer vision techniques to automatically determine a
student's attentiveness but with limited success in terms of
providing insight to comprehension [1,2]. Additionally,
researchers have reported certain factors related to eye metrics
(for example, average fixation duration) that can be used to
understand the intent of the person’s mind as they perceive and
process information presented to them [3,4]. While facial
expressions give insights into students' perceived attentiveness
from the observer's perspective, eye tracking metrics can add
another layer of insights concerning the students’ eyes searching
and acquiring content that has not been investigated in a wide
range of classroom settings. We assert that educators can benefit
by having an arsenal of tool sets that can help them identify eye
metrics data correlated with students’ knowledge

20
22

 IE
EE

 F
ro

nt
ie

rs
 in

 E
du

ca
tio

n
C

on
fe

re
nc

e
(F

IE
) |

 9
78

-1
-6

65
4-

62
44

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
FI

E5
66

18
.2

02
2.

99
62

68
1

Authorized licensed use limited to: Augusta University. Downloaded on October 12,2023 at 19:07:09 UTC from IEEE Xplore. Restrictions apply.

comprehension abilities. The advantage of using this approach
is the lack of observational effect due to the passive nature of the
system while having the similar attention-judging accuracy as
domain expert humans. The passive nature of the system is aptly
important as it can be applied to online classes that are
ubiquitous as a result of the COVID-19 pandemic.

The background section of this paper includes eye-tracking
studies related to student comprehension and attentiveness and
how these eye metrics can be used to predict attentiveness and
other cognitive states of students. The proposed approach uses
the Non-Intrusive Classroom Attention Tracking System
(NiCATS) [5] for experimental setup and data collection used
for comprehension-related analysis. Educators can use the data
collected from NiCATS to understand student comprehension.
NiCATS is an AI-enabled data collection application to predict
student attentiveness using webcam images and gaze data
collected from eye trackers. This research focuses on utilizing
NiCATS to understand student comprehension and extend the
capabilities of the NiCATS system to assist instructors at
improving the student experience in their classrooms. We
conducted one experiment in a CS lab testing environment to
provide insight into the usage of NiCATS for analyzing
students’ comprehension patterns with automatically generated
regions of interest (ROIs). The results indicated that the eye
metric and screenshot data collected by NiCATS can provide
meaningful information to instructors regarding student
comprehension. One notable use case result was the ability to
accurately identify the ordering of the regions used by students
to iteratively follow the code execution of a for loop. A broader
interpretation of the results also indicates that using multiple
unique ROI maps is necessary to accurately locate the links
between regions of interest as they relate to student
comprehension abilities. These insights from NiCATS can
certainly help instructors to gain more understanding of student
comprehension patterns instead of using the traditional
classroom settings

II. BACKGROUND

The background describes relevant literature on eye tracking
studies related to knowledge comprehension and limitation of
the existing research.

Researchers frequently use eye trackers to study the
cognitive processes related to comprehension from the subject’s
perspective. Eye tracking is a fast-growing research field, and it
has many applications in the measurement of attentiveness,
emotion, and cognition. In the context of comprehension studies
that use eye tracking hardware, researchers frequently use the
following terms:

• Eye gaze data: The immediate direction of a
person’s eyes translated to (x,y) coordinates when
looking at a computer monitor.

• Fixations: The stabilization of the eye on a part of
a stimulus for a period of time and are usually
around 200-300ms [4].

• Saccades: The quick and continuous eye movement
between fixations (~50ms on average) [4].

• Region of Interest (ROI) / Area of Interest (AOI):
A specific region or area of the computer monitor
identified for any purpose. In comprehension
studies, these regions are frequently defined as an
(x,y) coordinate pair.

For each of these, generally, an eye tracker is used. An eye
tracker can be eye-attached (like a contact lens), optical
(reflected infrared), or electric potential (electrodes placed
around the eyes). General consumer-grade eye trackers are
optical tracking, with some being head-mounted and some being
computer monitor-mounted.

Hijazi et al. used a desktop eye tracker and a non-intrusive
Heart Rate Variability (HRV) monitor to predict good and bad
quality code reviews using artificial intelligence techniques [6].
They collected the biometric data while the subjects reviewed
code samples and quantified their review quality based on the
number of bugs not detected in the provided code. Their results
showed that their tool could predict bad reviews of medium and
complex programs with a 75%-87% accuracy.

Rodeghero et al. conducted an empirical study of eye
movement patterns for subjects doing source code
summarization tasks [7]. The study compared the patterns of
professional programmers reviewing source code and found that
all 10 subjects followed nearly identical eye movement patterns
which were similar to reading natural language. Qualitative
findings of this study showed that programmers had the
following tendencies: reading code from left to right but not
always top to bottom, skimming source code instead of
thoroughly reading it, tendency to scan sectionally (transitions
between two fixation coordinates are usually within 2 lines of
the previously fixated line).

Fritz et al. conducted an experiment with 15 professional
programmers where data was collected from an eye tracker, an
electrodermal activity sensor, and an electroencephalography
sensor which was used to predict whether developers would find
a task to be difficult or not [8]. Their classifier was able to
predict whether a task would be easy or difficult to a new
developer with a 64.99% precision and 64.58% recall.

Veliyath et al. used data collected from self-reporting and an
eye tracker as a non-intrusive means to predict student attention
over the duration of a class [3]. The researchers mounted eye
trackers on the monitors of the computers in a computer lab and
had students periodically make note of how engaging the lecture
was on a Likert Scale from 1 (not engaging) to 10 (very
engaging). This data, along with the gaze data collected from the
eye tracker, allowed the researchers to create a machine learning
model that could predict how engaged students will be during
the presentation of the material.

Tobii Glasses were used by Rosengrant et al. to track student
eye movements during a presentation in order to identify causes
for inattention [9]. During a physical science lecture, they used
eight participants and recorded the locations of where the
students were looking. Their findings included that students
rarely paid attention to the professor unless he or she was
expressing emotion, drawing something, being amusing, or
making comparisons that aren't on the presentation slides. New
slides tended to maintain or divert student attention to the board.

Authorized licensed use limited to: Augusta University. Downloaded on October 12,2023 at 19:07:09 UTC from IEEE Xplore. Restrictions apply.

They preferred to look at drawings or diagrams before reading
text. Students who had printed notes before class tended to pay
less attention in class, according to the researchers.

With the intent of forecasting the "interest level" and
"perception of difficulty," Zhu et al. used sensors on wearable
computers to capture both hand gestures and heart activity [10].
During two lectures with 14 topic periods, they requested 30
volunteers to wear Moto 360 timepieces. They gathered motion
data at 25 Hz and PPG data at 12.5 Hz, as well as survey data
from students with regard to their degree of interest and
perception of difficulty in each lecture topic. The researchers
found that employing wrist-worn smartwatches for attention
monitoring delivers high accuracy, and that using other
physiological sensors could potentially be used to improve the
accuracy.

Tabassum et al. used a deep learning convolution neural
network and the outputs from a cloud-based emotion detection
service (Amazon Rekognition) [2]. They gathered data by
recording students' webcam photos during a class lecture. The
labeled facial photos were used to train a convolutional neural
network. Amazon's Rekognition technology was then used to
extract the photos' facial emotions. The facial emotions were
shown to be statistically significant, indicating that facial
emotions can be used to improve the accuracy of attention
detection models.

Sanders et al. NiCATS [5] include support for
“comprehension analysis” not present in traditional eye tracking
software. The tool provided support for gaze metric analysis
(e.g., fixation, saccades, heatmap overlays) in the context of both
comprehension and the perceived attentiveness of students using
images captured via a webcam.

III. PROPOSED APPROACH

Fig. 3 provides a high level overview and flow of the
NiCATS system with respect to collecting and processing data
for knowledge comprehension. The Data Collection illustrated
in Fig. 3 primarily resides on the student computer. The
hardware setup (Fig. 1) shows the physical placement of the data
collection devices used to collect data (eye tracker at the bottom
of the machine and webcam at the top). The lightweight
application collects screenshots at preset intervals or earlier if
user activities such as mouse clicks or scrolls are detected. This
is to ensure that screen content and subsequent changes to the
screen content are accurately captured. The stream of raw gaze
points are also captured using the lightweight application. Both
raw gaze points and screen capture are time stamped so they can
be synchronized for the evaluation steps. The collected data is
then forwarded and stored in a database on the server.

Fig. 1. NiCATS Data Collection Hardware Setup

The Pre-Processing block resides on the server. The student
screenshots data are pulled from the server and piped to AWS
Textract, a cloud service that automatically extracts text from
images, in this case our screenshots, along with coordinate
boundaries for each text object identified in the image. The
output of the text extraction (Fig. 2) is used to generate ROI
maps. There are two types of ROI maps generated, Lexer Based
(used interchangeably in this paper with Textracts’ Word type)
which are the regions defined on a word-by-word basis, and Line
Based which are the regions defined as an entire line of textual
content. It is important to note that a Lexer based region is not
always a word but can often by a single character in the context
of code review.

Authorized licensed use limited to: Augusta University. Downloaded on October 12,2023 at 19:07:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. NiCATS Data Collection Hardware Setup

Separately, the raw eye gaze points are used to compute eye
metrics data such as saccades and fixations. Each extracted
saccade consisted of an (x, y) coordinate for both the start and
end points of the saccadic movement along with the duration and
timestamp for which the saccade occurred. Similarly, each
fixation point consists of a duration and a timestamp, but only a
single (x, y) coordinate is stored.

The ROI maps, saccades and fixations elements are used as
input for computing Hit/Miss Filtering, which is used to
eliminate off-target eye metrics. From the hit/miss data, we
compute the Coordinate to ROI translations, which gives the
ability to extract comprehension related eye metrics from the
perspective of each ROI. These metrics are then used to generate
various outputs for instructors including Transition Frequency
tables, which are used to assess the most commonly occurring
fixation transitions between ROIs, and Region Difficulty Maps,
which use the fixation durations order to provide instructors with
a visual representation of the most difficult regions for the
students to comprehend.

Fig. 3. Overview of NiCATS data collection and data processing

IV. EVALUATING APPROACH

This section provides an overview of the experiment design,
including the research goal, experiment setting, artifacts,
experiment setup, data collection, and data processing.

A. Research Goal

The goal of this experiment was to explore how instructors
can utilize NiCATS data (gaze metrics, screenshots) to gain
insights into students’ cognitive processes when doing code
review tasks.

B. Experiment Setting

Our research took place in the second session of a sequence
of volunteer undergraduate computer science students taking an
introductory programming course and 10 students participated
in the study. The NiCATS software and the associated data
capturing gear were installed on each participant's PC to set up
the experiment. During the trial, each participant was given four
different Java programs to review. Participants were then asked
to identify which line numbers contained an error, as well as
their explanation for the error.

C. Artifacts

Participants were asked to review four separate Java
programs, each with varying complexity metrics, number of
lines, and number of seeded defects. Java was selected as the
programming language as it is the most familiar language to the

Type: LINE

Detected: //@param1 : The number of pennies in the

wallet

Confidence: 99.11%

Id: 7f6b9aac-f0a0-437d-8315-107e7fa67e18

Relationships: [{'Type': 'CHILD', 'Ids': ['0ec45a3e-a0ac-

4d83-a3b7-515fe8dd72b3', '36aac11c-100a-4f54-bcd4-

deb4e2142061', '1636c6fc-f74f-4f3b-b57f-

eb77fba922b4', '5bf2c5d8-3cb2-44c2-be47-

91db66da701a', 'da0023d6-3196-4d7e-91fb-

4ee8882ece3d', 'f2dca9d7-fe63-4adb-844a-

b48128621463', '5791a67d-b915-4b92-a8d8-

615b41761207', '7c98d1f8-94cd-4ff7-8dbb-

e937b467ccdd', '4ea49615-7f99-476a-a847-

a6b7eee0211d']}]

Bounding Box: {

'Width': 0.2185705155134201,

'Height': 0.0154563682153821,

'Left': 0.22670646011829376,

'Top': 0.15036025643348694}

Polygon: [

{'X': 0.22670646011829376, 'Y':

0.15036025643348694},

{'X': 0.44527697563171387, 'Y':

0.15036025643348694},

{'X': 0.44527697563171387, 'Y':

0.16581661999225616},

{'X': 0.22670646011829376, 'Y':

0.16581661999225616}]

Authorized licensed use limited to: Augusta University. Downloaded on October 12,2023 at 19:07:09 UTC from IEEE Xplore. Restrictions apply.

participants. Each participant had between six months to one
year of experience writing programs in Java. The program
examples included bugs of varying difficulty and related to the
course content previously taught to the participants. For
example, basic syntax errors can often be spotted by reviewing
only a single line of code and are relatively easy to identify even
for a novice programmer while errors related to object
inheritance and data structures often require the participant to
review multiple lines of code and are more difficult for novice
programmers to identify.

D. Experiment Setup

The following section describes the experiment setup
procedure.

Step 1 - Calibration: After logging in to their machine, all
participants were asked to calibrate the mounted eye tracker
using the Tobii Eye Tracking Core Software which allows the
participant to save a calibration profile specific to their own
eyes. This improves the accuracy and precision of the collected
gaze points and is an essential step for calculating eye metrics
against regions of interest with tighter boundaries.

Step 2 - NiCATS Client: The participants were instructed to
download the NiCATS client software to their machine.
Participants were then asked to launch the NiCATS software
which opens a pop-up window describing the personal data that
will be collected during the experiment as well as the option to
“opt-in” or “opt-out” of the experiment.

Step 3 - Initialize Data Collection: To begin the data
collection process, the researchers started a new recording
session using the NiCATS web client. This action automatically
notifies all machines in the room to start collecting data if the
participant is opted-in for the study. Throughout the recording
session, raw data points (gaze-point coordinates, screenshots)
are collected and stored on the server for post-processing.

Step 4 - Program Presentation: The participants were given
five minutes to review each Java program. Each participant
reviewed the programs in full screen mode. This is essential to
the experiment because it gives the ability to define ROI layouts
to a singular screenshot and analyze every participant’s gaze
point data against the same map.

Step 5 - Gathering Responses: After each of the five-minute
intervals, the participants were asked to write down which line
numbers contained an error, as well as their justification for the
error. This step was repeated for all four code examples.

Step 6 - Ending Data Collection: After the four code
examples were reviewed, the students were asked to close the
NiCATS software, and the researchers ended the recording
session via the NiCATS web client.

E. Data Processing

The gaze data and screenshots collected during the
experiment have little meaning in their raw form (e.g., fixation
durations on a source code sample with highlighted ROIs that
contained errors in Fig. 4). Instructors will need to speculate
post-hoc based on the data collected from the screenshots and
raw gaze points. This highlights the current limitations and the

motivation for multilayered and automated analysis presented in
the remainder of the paper.

Fig. 4. Fixation count distribution for manually defined ROIs

Defining ROI Boundaries: Since each participant reviewed
the programs in full screen mode using monitors with the same
resolution, we can select a singular screenshot for each question
and assign region of interest boundaries to the image. In many
code comprehension studies, the regions are defined using
McCabe’s cyclomatic complexity metric which measures the
number of linearly independent paths through a program module
[6]. While useful, Regions defined in this manner often contain
many lines of code and many unique lexical tokens which can
lead to lackluster results, especially for instructors of
introductory programming courses. By defining regions using a
multi-line methodology, as seen in complexity-based
definitions, instructors are unable to extract the more granular
insights associated with these region boundaries. That is to say,
comprehension insights extracted from these regions will not
include the behavior exhibited within the region boundaries as
well as the fixations that occur outside of these boundaries.

To automatically define more granular regions of interest,
the screenshots collected by NiCATS are first uploaded as an
Amazon Web Services (AWS) S3 object. The S3 objects are
then processed using the AWS Textract API. The Textract API
is an Optical Character Recognition (OCR) service that accepts
an image and returns the Line and Word boundaries detected of
text contained within the image as well as the textual content
contained within the region.

Authorized licensed use limited to: Augusta University. Downloaded on October 12,2023 at 19:07:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Word based region of interest map (vertical lines indicate start and end
of word)

Fig. 6. Line based region of interest map (each line bounded by a box)

Gaze Data to Fixations: Once the ROI maps are defined for
each question, we process the raw gaze data in the context of the
three ROI maps to extract the relevant eye metrics.

1) Fixations: Fixations were calculated from the raw gaze

data using the I-DT algorithm [20] with a 1° maximum

dispersion and 300+ millisecond duration threshold. After the

region boundaries are defined and fixation coordinates are

extracted, the coordinate is boundary checked against each

region of every region of interest map to check if the fixation is

a hit or a miss.

a) A hit refers to a fixation (shown as a solid circle) that

occurred inside the boundaries, or within 1° (to account for

accuracy error in the eye tracking hardware) of any region of

interest in our predefined map (Fig. 7 and Fig. 8).

b) A miss refers to any fixation that lies outside the

boundaries of all regions in our region of interest map (Fig. 9).

Any fixation identified as a hit is stored in the database and any

fixation identified as a miss is omitted. The miss fixations are

omitted because these regions contain no text which means, in

this experiment setting, that this fixation is not aiding the

student with their comprehension.

2) Additional Metrics: Using the results of the hit/miss

boundary detection, we calculate several essential metrics to be

used in our analysis. On a participant to question level, we

calculate the following with respect to each ROI.

a) Average Fixation Duration: The total fixation time for

an ROI divided by the number of fixations in that ROI.

b) Number of Fixations: The total number of times a

participant fixated in an ROI. This is a common metric used in

eye tracking studies as an indicator of how much visual

attention is required to comprehend the information [4].

c) ROI transition frequency: Calculated as the most

frequently occurring fixation transition paths between ROIs

between the entire sample population. Fixation transitions

provide insight into the links made by the participants between

regions of interest. This provides insight into the ordering for

which ROIs were used by the students to comprehend portions

of the code base.

Fig. 7. Fixation hit (Direct)

Fig. 8. Fixation hit (1° offset)

Fig. 9. Fixation Miss

V. RESULTS AND DISCUSSION

We performed qualitative analyses of the results in the
context of individual students and across the entire population in
order to extract insights related to the comprehension processes
of the students.

Using the extracted fixation durations for each region of
interest (both the Line based map and the Word based map),
instructors can use the generated fixation duration overlay to
gain insight into the comprehension difficulty of each region of
interest. Fig. 10 and Fig. 11 illustrate these fixation durations for
all participants on a cropped code sample used in the
experiment. Instructors reviewing the Line based graphic can
quickly identify that students spent significantly more time
fixating on the lines contained within the for loop (indicated by
a darker highlighted region). Further review of these fixation
durations using the Word based ROI map indicates which
specific words in these Line based regions were most frequently
fixated.

Authorized licensed use limited to: Augusta University. Downloaded on October 12,2023 at 19:07:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. Fixation Duration density on Line based ROI map

Fig. 11. Fixation Duration density on Word based ROI map

In the previous example, due to the experience level of the
students as well as the nature of looping concepts in
programming, the results for the distribution of these fixation
durations were expected. That is to say, for both the Line and
Word based ROI maps, the researchers expected to find longer
fixation durations in the regions contained within the for loop.

In addition to the fixation duration distributions, instructors
also have the ability to view the transition frequencies of
dynamic length between ROIs on an individual and classroom
level. By reviewing these transitions, instructors can identify
which regions students are using as well as the ordering of these
regions, to evaluate how students are comprehending the
material.

In the context of the above example, it was found that the
most frequently occurring fixation transition sequence for all
participants also occurred within this for loop. The output
generated by the program using the Line based ROI map with
n=3 is shown in Table 1, whereas Table 2 shows the output
generated using the Word based ROI map with n=3. Reviewing
the results of these ROI transitions, the instructor can see that,
on a Line level, students frequently transitioned between the for
loop declaration statement, and the following line. Instructors
can then make data driven insights that students were following
the iterative procedure of the for loop to determine if any errors
existed in these regions. Additionally, a review of the transitions
at the Word level indicate that the students most frequently
transitioned between wallet.length (an upper boundary control
for limiting the number of loop iterations) and i++ (the

incrementing value for the loop). This is an indicator that
students were frequently checking the control parameters of the
for loop as they attempted to identify any existing errors in the
loop.

TABLE I. MOST FREQUENTLY OCCURRING ROI TRANSITION BETWEEN

ALL STUDENTS (LINE BASED: N=3)

ROI Text Frequency

1. for (int i = 0; i <= wallet.length; i++)

2. if (i < numPennies) wallet[i] = new Penny();

3. for (int i = 0; i <= wallet.length; i++)

35

TABLE II. MOST FREQUENTLY OCCURRING ROI TRANSITION BETWEEN

ALL STUDENTS (WORD BASED: N=3)

ROI Text Frequency

1. wallet.length;

2. i++)
3. wallet.length;

35

The assessment of these results using only the previously
discussed outputs is an indicator that the students, in general,
were all comprehending the for loop correctly. By following the
for loop iteratively while checking boundary conditions for the
loop itself, students indeed understand the looping concepts well
enough to identify certain runtime errors that may exist. To
validate this, the quiz responses containing the line number and
explanation for each identified error were evaluated to see if any
student reported an error in the four lines used in the for loop. It
was found that no student reported an error in any of these
regions.

VI. LIMITATIONS AND SUMMARY OF RESULTS

The results of this approach do have some limitations that
must be addressed. While using the AWS Textract API to
automatically define regions of interest does eliminate a
significant amount of the manual work required in previous
NiCATS experiments, Textract does not always accurately
identify the regions contained in the image. For example, in Fig.
11 we can see that the region boundaries for main(String[] are
cut off where the leftmost boundary of this word divides the
letter m in half. The result of this accuracy error outputs the word
nain(String[] instead of the true text that should have been
included. Another example not shown in these figures consists
of an error where the Line based detection does not always
include all of the necessary text to define the region in its
entirety. This was a common occurrence for regions where 2 or
more spaces were present between words.

Another limitation of this study was the experience level of
the participant. The average score for the test results across the
student population was 35.94% which indicates that many of the
students struggled with identifying errors in the code.

These limitations could have a significant impact on the
interpretation of the results if the data is analyzed without the
context of the screenshot. However, for this study, we are able
to review the screenshot to visually identify where these errors

Authorized licensed use limited to: Augusta University. Downloaded on October 12,2023 at 19:07:09 UTC from IEEE Xplore. Restrictions apply.

exist and the errors can be accounted for when reviewing the
results.

To summarize the results, it can be said that the method used
for defining regions of interest has a significant impact on the
way the results can be interpreted by an instructor. The findings
in this research show that using multi-layered ROI maps can
provide instructors with unique insights into the cognitive
processes of students that are heavily influenced by the
methodologies used for defining the ROI map initially. Using a
Line based definition, we were able to see that students had more
difficulty comprehending the for loop than any other regions in
the code (as seen by the Line based fixation duration) which was
further supported by the most frequently occurring fixation
transitions for this ROI map. Using the Word based definition,
it was found that students had most difficulty comprehending
two of the words bounded by these Line based regions (one in
each row), however, when reviewing the transition frequency
for this code sample, the results indicate that the most frequently
occurring transition was not between the two lines of code, but
between two Words located within the same line of code. To
summarize these results, it can be concluded that using various
ROI definitions provides essential information needed to
identify and assess the comprehension patterns of students doing
code review tasks.

VII. CONCLUSION AND FUTURE WORK

This paper presents the investigation, design, analysis, and
results of an exploratory work for the developing an automated
pedagogical toolset for assessing student comprehension while
performing code review tasks. This methodology is an
expansion to our existing NiCATS application through the
addition of a comprehension analysis toolset which can be used
by instructors to evaluate student performance.

The novel contribution of this paper is the expansion of the
NiCATS data collection system to accommodate instructors by
providing pedagogical tools for use in comprehension
assessments. Another novel contribution is through the use of
multi-layered ROI mapping mechanisms to provide user-
defined, granular insights about student comprehension patterns
that are not presently available in state of the art educational
tools. This research could be invaluable to instructors seeking a
quick solution for identifying key points of misunderstanding
among their students. By identifying these problem areas early
on, instructors can use this information to design educational
interventions in order to improve student knowledge acquisition
and knowledge retention.

Authorized licensed use limited to: Augusta University. Downloaded on October 12,2023 at 19:07:09 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Whitehill, Z. Serpell, Y. Lin, A. Foster and J. R. Movellan, "The Faces
of Engagement: Automatic Recognition of Student Engagementfrom
Facial Expressions," in IEEE Transactions on Affective Computing, vol.
5, no. 1, pp. 86-98, 1 Jan.-March 2014, doi:
10.1109/TAFFC.2014.2316163.

[2] Tabassum, T., Allen, A. A., & De, P. (2020). “Non-Intrusive
Identification of Student Attentiveness and Finding Their Correlation
with Detectable Facial Emotions.” Proceedings of the 2020 ACM
Southeast Conference, 127–134. Presented at the Tampa, FL, USA.
doi:10.1145/3374135.3385263

[3] Veliyath, N., De, P., Allen, A. A., Hodges, C. B., & Mitra, A. (2019).
“Modeling students’ attention in the classroom using eyetrackers.”
Proceedings of the 2019 ACM Southeast Conference, 2–9.
doi:10.1145/3299815.3314424

[4] Sharafi, Z., Shaffer, T., Sharif, B., & Guéhéneuc, Y.-G. (2015). “Eye-
tracking metrics in software engineering.” 2015 Asia-Pacific Software
Engineering Conference (APSEC), 96–103. doi:10.1109/APSEC.2015.53

[5] A. Sanders, B. Boswell, G. S. Walia and A. Allen, “Non-Intrusive
Classroom Attention Tracking System (NiCATS),” 2021 IEEE Frontiers
in Education Conference (FIE), 2021, pp. 1-9, doi:
10.1109/FIE49875.2021.9637411.

[6] H. Hijazi, J. Cruz, J. Castelhano, R. Couceiro, M. Castelo-Branco, P. d.
Carvalho and H. Madeira, “iReview: An Intelligent Code Review
Evaluation Tool using Biofeedback,” in the 32nd International Sympo-
sium on Software Reliability Engineering (ISSRE 2021), 2021

[7] P. Rodeghero and C. McMillan, “An Empirical Study on the Patterns of
Eye Movement during Summarization Tasks,” 2015 ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement (ESEM), 2015, pp. 1-10, doi:
10.1109/ESEM.2015.7321188

[8] Thomas Fritz, Andrew Begel, Sebastian C. Müller, Serap Yigit-Elliott,
and Manuela Züger. 2014. ”Using psycho-physiological measures to
assess task difficulty in software development.” In Proceedings of the
36th International Conference on Software Engineering(ICSE 2014).
Association for Computing Machinery, New York, NY, USA, 402–413.
doi: 10.1145/2568225.2568266

[9] Rosengrant, D., Hearrington, D., Alvarado, K., & Keeble, D. (2012).
“Following student gaze patterns in physical science lectures.” AIP
Conference Proceedings, 1413(1), 323–326. doi: 10.1063/1.3680060

[10] Zhu, Z., Ober, S., & Jafari, R. (2017). “Modeling and detecting student
attention and interest level using wearable computers.” 2017 IEEE 14th
International Conference on Wearable and Implantable Body Sensor
Networks (BSN), 13–18. doi: 10.1109/BSN.2017.7935996

[11] J. H. Goldberg and X. P. Kotval, “Computer interface evaluation using
eye movements: methods and constructs,” International Journal of
Industrial Ergonomics, vol. 24, no. 6, pp. 631–645, 1999.

Authorized licensed use limited to: Augusta University. Downloaded on October 12,2023 at 19:07:09 UTC from IEEE Xplore. Restrictions apply.

