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Abstract—This Research to Practice Full Paper presents the 

use of data collected by our Non-Intrusive Classroom Attention 

Tracking System (NiCATS) to evaluate student comprehension. 

Quantifying students' cognitive processes in classrooms in a non-

intrusive way is challenging. By analyzing various aspects of the 

eye metrics against defined regions of interest (ROI), instructors 

can better understand students’ cognitive processes as they 

acquire new knowledge. Eye-tracking studies primarily define 

ROIs based on commonly used metrics (source code complexity, 

significant fixation durations, etc.). While helpful, these metrics, 

when used independently, do not accurately represent their 

comprehension patterns. This paper contributes an alternative, 

multilayered approach for calculating gaze metrics against 

automatically defined ROIs. The work utilizes the AI-based Non-

Intrusive Classroom Attention Tracking System (NiCATS - 

developed by the researchers), collecting raw-gaze data in real-

time as information is presented on a computer screen. This paper 

reports the results of a study in which undergraduate students in 

a CS programming course were asked to identify defects seeded in 

Java programs. Each JAVA program included its own unique sets 

of ROIS defined using two different granularities: lexer-based and 

line-based. The ROI sets were then used to calculate relevant eye 

metrics in the context of each ROI layout. The results of the eye 

metric analysis at specific ROIs w.r.t their code review task 

provide insights into the cognitive processes students undergo 

when trying to comprehend new material. Subdividing this region 

into lexer-based regions, we determined “content topics” students 

struggled with (e.g., using complex data types) in a specific area. 

This feedback is valuable to the instructor as it enables the ability 

to identify hard-to-comprehend content topics post-hoc and gives 

the ability to validate student learning in the classroom. While this 

experiment focused on students in introductory programming 

courses, we intend to conduct experiments in other learning 

settings where students are expected to read material on a 

computer screen or solve actual problems. To summarize, the 

analysis of these eye metrics using more fine-grained ROIs (lexer-

based, line-based) as an extension of complexity-based ROIs 

provides instructors with deeper insights into the cognitive 

processes used by students when compared to the current state-of-

the-art techniques. 

Keywords—Gaze Tracking, Knowledge Gain, Code 

Comprehension 

I. INTRODUCTION 

One of the open-ended research problems in Computer 
Science education is to gauge student comprehension in 
classrooms (either post-hoc or real-time). While this transcends 
all classrooms, it is a bigger issue in a computer science lab 
where students are working behind monitors, thus limiting 
student-teacher visual interactions. Traditional evaluation like 
test or quiz results can indicate whether students have 
understood the material or not, but this lacks insight into how 
they have approached the solution. This makes it difficult for 
educators to identify the causes behind why students may be 
misunderstanding the presented information. By identifying 
these insights and issues early on, instructors would be able to 
provide better lectures and guidance, especially for struggling 
students. 

Prior researchers have utilized machine learning and 
computer vision techniques to automatically determine a 
student's attentiveness but with limited success in terms of 
providing insight to comprehension [1,2]. Additionally, 
researchers have  reported certain factors related to eye metrics 
(for example, average fixation duration) that can be used to  
understand the intent of the person’s mind as they perceive and 
process information presented to them [3,4]. While facial 
expressions give insights into students' perceived attentiveness 
from the observer's perspective, eye tracking metrics can add 
another layer of insights concerning the students’ eyes searching 
and acquiring content that has not been investigated in a wide 
range of classroom settings. We assert that educators can benefit 
by having an arsenal of tool sets that can help them  identify eye 
metrics data correlated with students’ knowledge 
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comprehension abilities.  The advantage of using this approach 
is the lack of observational effect due to the passive nature of the 
system while having the similar attention-judging accuracy as 
domain expert humans. The passive nature of the system is aptly 
important as it can be applied to online classes that are 
ubiquitous as a result of the COVID-19 pandemic. 

The background section of this paper includes eye-tracking 
studies related to student comprehension and attentiveness and 
how these eye metrics can be used to predict attentiveness and 
other cognitive states of students. The proposed approach uses 
the Non-Intrusive Classroom Attention Tracking System 
(NiCATS) [5] for experimental setup and data collection used 
for comprehension-related analysis. Educators can use the data 
collected from NiCATS to understand student comprehension. 
NiCATS is an AI-enabled data collection application to predict 
student attentiveness using webcam images and gaze data 
collected from eye trackers. This research focuses on utilizing 
NiCATS to understand student comprehension and extend the 
capabilities of the NiCATS system to assist instructors at 
improving the student experience in their classrooms. We 
conducted one experiment in a CS lab testing environment to 
provide insight into the usage of NiCATS for analyzing 
students’ comprehension patterns with automatically generated 
regions of interest (ROIs). The results indicated that the eye 
metric and screenshot data collected by NiCATS can provide 
meaningful information to instructors regarding student 
comprehension. One notable use case result was the ability to 
accurately identify the ordering of the regions used by students 
to iteratively follow the code execution of a for loop. A broader 
interpretation of the results also indicates that using multiple 
unique ROI maps is necessary to accurately locate the links 
between regions of interest as they relate to student 
comprehension abilities. These insights from NiCATS can 
certainly help instructors to gain more understanding of student 
comprehension patterns instead of using the traditional 
classroom settings 

II. BACKGROUND 

The background describes relevant literature on eye tracking 
studies related to knowledge comprehension and limitation of 
the existing research. 

Researchers frequently use eye trackers to study the 
cognitive processes related to comprehension from the subject’s 
perspective. Eye tracking is a fast-growing research field, and it 
has many applications in the measurement of attentiveness, 
emotion, and cognition. In the context of comprehension studies 
that use eye tracking hardware, researchers frequently use the 
following terms: 

• Eye gaze data: The immediate direction of a 
person’s eyes translated to (x,y) coordinates when 
looking at a computer monitor.  

• Fixations: The stabilization of the eye on a part of 
a stimulus for a period of time and are usually 
around 200-300ms [4].  

• Saccades: The quick and continuous eye movement 
between fixations (~50ms on average) [4].  

• Region of Interest (ROI) / Area of Interest (AOI): 
A specific region or area of the computer monitor 
identified for any purpose. In comprehension 
studies, these regions are frequently defined as an 
(x,y) coordinate pair. 

For each of these, generally, an eye tracker is used. An eye 
tracker can be eye-attached (like a contact lens), optical 
(reflected infrared), or electric potential (electrodes placed 
around the eyes). General consumer-grade eye trackers are 
optical tracking, with some being head-mounted and some being 
computer monitor-mounted. 

Hijazi et al. used a desktop eye tracker and a non-intrusive 
Heart Rate Variability (HRV) monitor to predict good and bad 
quality code reviews using artificial intelligence techniques [6]. 
They collected the biometric data while the subjects reviewed 
code samples and quantified their review quality based on the 
number of bugs not detected in the provided code. Their results 
showed that their tool could predict bad reviews of medium and 
complex programs with a 75%-87% accuracy. 

Rodeghero et al. conducted an empirical study of eye 
movement patterns for subjects doing source code 
summarization tasks [7]. The study compared the patterns of 
professional programmers reviewing source code and found that 
all 10 subjects followed nearly identical eye movement patterns 
which were similar to reading natural language. Qualitative 
findings of this study showed that programmers had the 
following tendencies: reading code from left to right but not 
always top to bottom, skimming source code instead of 
thoroughly reading it, tendency to scan sectionally (transitions 
between two fixation coordinates are usually within 2 lines of 
the previously fixated line). 

Fritz et al. conducted an experiment with 15 professional 
programmers where data was collected from an eye tracker, an 
electrodermal activity sensor, and an electroencephalography 
sensor which was used to predict whether developers would find 
a task to be difficult or not [8]. Their classifier was able to 
predict whether a task would be easy or difficult to a new 
developer with a 64.99% precision and 64.58% recall. 

Veliyath et al. used data collected from self-reporting and an 
eye tracker as a non-intrusive means to predict student attention 
over the duration of a class [3]. The researchers mounted eye 
trackers on the monitors of the computers in a computer lab and 
had students periodically make note of how engaging the lecture 
was on a Likert Scale from 1 (not engaging) to 10 (very 
engaging). This data, along with the gaze data collected from the 
eye tracker, allowed the researchers to create a machine learning 
model that could predict how engaged students will be during 
the presentation of the material. 

Tobii Glasses were used by Rosengrant et al. to track student 
eye movements during a presentation in order to identify causes 
for inattention [9]. During a physical science lecture, they used 
eight participants and recorded the locations of where the 
students were looking. Their findings included that students 
rarely paid attention to the professor unless he or she was 
expressing emotion, drawing something, being amusing, or 
making comparisons that aren't on the presentation slides. New 
slides tended to maintain or divert student attention to the board. 
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They preferred to look at drawings or diagrams before reading 
text. Students who had printed notes before class tended to pay 
less attention in class, according to the researchers. 

With the intent of forecasting the "interest level" and 
"perception of difficulty," Zhu et al. used sensors on wearable 
computers to capture both hand gestures and heart activity [10]. 
During two lectures with 14 topic periods, they requested 30 
volunteers to wear Moto 360 timepieces. They gathered motion 
data at 25 Hz and PPG data at 12.5 Hz, as well as survey data 
from students with regard to their degree of interest and 
perception of difficulty in each lecture topic. The researchers 
found that employing wrist-worn smartwatches for attention 
monitoring delivers high accuracy, and that using other 
physiological sensors could potentially be used to improve the 
accuracy. 

Tabassum et al. used a deep learning convolution neural 
network and the outputs from a cloud-based emotion detection 
service (Amazon Rekognition) [2]. They gathered data by 
recording students' webcam photos during a class lecture. The 
labeled facial photos were used to train a convolutional neural 
network. Amazon's Rekognition technology was then used to 
extract the photos' facial emotions. The facial emotions were 
shown to be statistically significant, indicating that facial 
emotions can be used to improve the accuracy of attention 
detection models. 

Sanders et al. NiCATS [5] include support for 
“comprehension analysis” not present in traditional eye tracking 
software. The tool provided support for gaze metric analysis 
(e.g., fixation, saccades, heatmap overlays) in the context of both 
comprehension and the perceived attentiveness of students using 
images captured via a webcam. 

III. PROPOSED APPROACH 

Fig. 3 provides a high level overview and flow of the 
NiCATS system with respect to collecting and processing data 
for knowledge comprehension. The Data Collection illustrated  
in Fig. 3 primarily resides on the student computer. The 
hardware setup (Fig. 1) shows the physical placement of the data 
collection devices used to collect data (eye tracker at the bottom 
of the machine and webcam at the top). The lightweight 
application collects screenshots at preset intervals or earlier if 
user activities such as mouse clicks or  scrolls are detected. This 
is to ensure that screen content and subsequent changes to the 
screen content are accurately captured. The stream of raw gaze 
points are also captured using the lightweight application. Both 
raw gaze points and screen capture are time stamped so they can 
be synchronized for the evaluation steps. The collected data is 
then forwarded and stored in a database on the server. 

 

Fig. 1. NiCATS Data Collection Hardware Setup 

The Pre-Processing block resides on the server. The student 
screenshots data are pulled from the server and piped to AWS 
Textract, a cloud service that automatically extracts text from 
images, in this case our screenshots, along with coordinate 
boundaries for each text object identified in the image.  The 
output of the text extraction (Fig. 2) is used to generate ROI 
maps. There are two types of ROI maps generated, Lexer Based 
(used interchangeably in this paper with Textracts’ Word type) 
which are the regions defined on a word-by-word basis, and Line 
Based which are the regions defined as an entire line of textual 
content. It is important to note that a Lexer based region is not 
always a word but can often by a single character in the context 
of code review. 
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Fig. 2. NiCATS Data Collection Hardware Setup 

Separately, the raw eye gaze points are used to compute eye 
metrics data such as saccades and fixations. Each extracted 
saccade consisted of an (x, y) coordinate for both the start and 
end points of the saccadic movement along with the duration and 
timestamp for which the saccade occurred. Similarly, each 
fixation point consists of a duration and a timestamp, but only a 
single (x, y) coordinate is stored. 

The ROI maps, saccades and fixations elements are used as 
input for computing Hit/Miss Filtering, which is used to 
eliminate off-target eye metrics.  From the hit/miss data, we 
compute the Coordinate to ROI translations, which gives the 
ability to extract comprehension related eye metrics from the 
perspective of each ROI. These metrics are then used to generate 
various outputs for instructors including Transition Frequency 
tables, which are used to assess the most commonly occurring 
fixation transitions between ROIs, and Region Difficulty Maps, 
which use the fixation durations order to provide instructors with 
a visual representation of the most difficult regions for the 
students to comprehend. 

 

Fig. 3. Overview of NiCATS data collection and data processing 

IV. EVALUATING APPROACH 

This section provides an overview of the experiment design, 
including the research goal, experiment setting, artifacts, 
experiment setup, data collection, and data processing. 

A. Research Goal 

The goal of this experiment was to explore how instructors 
can utilize NiCATS data (gaze metrics, screenshots) to gain 
insights into students’ cognitive processes when doing code 
review tasks. 

B. Experiment Setting 

Our research took place in the second session of a sequence 
of volunteer undergraduate computer science students taking an 
introductory programming course and 10 students participated 
in the study. The NiCATS software and the associated data 
capturing gear were installed on each participant's PC to set up 
the experiment. During the trial, each participant was given four 
different Java programs to review. Participants were then asked 
to identify which line numbers contained an error, as well as 
their explanation for the error. 

C. Artifacts 

Participants were asked to review four separate Java 
programs, each with varying complexity metrics, number of 
lines, and number of seeded defects. Java was selected as the 
programming language as it is the most familiar language to the 

Type: LINE 

Detected: //@param1 : The number of pennies in the 

wallet 

Confidence: 99.11% 

Id: 7f6b9aac-f0a0-437d-8315-107e7fa67e18 

 

Relationships: [{'Type': 'CHILD', 'Ids':   ['0ec45a3e-a0ac-

4d83-a3b7-515fe8dd72b3', '36aac11c-100a-4f54-bcd4-

deb4e2142061', '1636c6fc-f74f-4f3b-b57f-

eb77fba922b4', '5bf2c5d8-3cb2-44c2-be47-

91db66da701a', 'da0023d6-3196-4d7e-91fb-

4ee8882ece3d', 'f2dca9d7-fe63-4adb-844a-

b48128621463', '5791a67d-b915-4b92-a8d8-

615b41761207', '7c98d1f8-94cd-4ff7-8dbb-

e937b467ccdd', '4ea49615-7f99-476a-a847-

a6b7eee0211d']}] 

 

Bounding Box: { 

'Width': 0.2185705155134201,  

'Height': 0.0154563682153821,  

'Left': 0.22670646011829376,  

'Top': 0.15036025643348694} 

 

Polygon: [ 

{'X': 0.22670646011829376, 'Y': 

0.15036025643348694},  

{'X': 0.44527697563171387, 'Y': 

0.15036025643348694},  

{'X': 0.44527697563171387, 'Y': 

0.16581661999225616},  

{'X': 0.22670646011829376, 'Y': 

0.16581661999225616}] 
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participants. Each participant had between six months to one 
year of experience writing programs in Java. The program 
examples included bugs of varying difficulty and related to the 
course content previously taught to the participants. For 
example, basic syntax errors can often be spotted by reviewing 
only a single line of code and are relatively easy to identify even 
for a novice programmer while errors related to object 
inheritance and data structures often require the participant to 
review multiple lines of code and are more difficult for novice 
programmers to identify. 

D. Experiment Setup 

The following section describes the experiment setup 
procedure. 

Step 1 - Calibration: After logging in to their machine, all 
participants were asked to calibrate the mounted eye tracker 
using the Tobii Eye Tracking Core Software which allows the 
participant to save a calibration profile specific to their own 
eyes. This improves the accuracy and precision of the collected 
gaze points and is an essential step for calculating eye metrics 
against regions of interest with tighter boundaries. 

Step 2 - NiCATS Client: The participants were instructed to 
download the NiCATS client software to their machine. 
Participants were then asked to launch the NiCATS software 
which opens a pop-up window describing the personal data that 
will be collected during the experiment as well as the option to 
“opt-in” or “opt-out” of the experiment. 

Step 3 - Initialize Data Collection: To begin the data 
collection process, the researchers started a new recording 
session using the NiCATS web client. This action automatically 
notifies all machines in the room to start collecting data if the 
participant is opted-in for the study.  Throughout the recording 
session, raw data points (gaze-point coordinates, screenshots) 
are collected and stored on the server for post-processing. 

Step 4 - Program Presentation: The participants were given 
five minutes to review each Java program. Each participant 
reviewed the programs in full screen mode. This is essential to 
the experiment because it gives the ability to define ROI layouts 
to a singular screenshot and analyze every participant’s gaze 
point data against the same map. 

Step 5 - Gathering Responses: After each of the five-minute 
intervals, the participants were asked to write down which line 
numbers contained an error, as well as their justification for the 
error. This step was repeated for all four code examples. 

Step 6 - Ending Data Collection: After the four code 
examples were reviewed, the students were asked to close the 
NiCATS software, and the researchers ended the recording 
session via the NiCATS web client. 

E. Data Processing 

The gaze data and screenshots collected during the 
experiment have little meaning in their raw form (e.g., fixation 
durations on a source code sample with highlighted ROIs that 
contained errors in Fig. 4). Instructors will need to speculate 
post-hoc based on the data collected from the screenshots and 
raw gaze points. This highlights the current limitations and the 

motivation for multilayered and automated analysis presented in 
the remainder of the paper. 

 

Fig. 4. Fixation count distribution for manually defined ROIs 

Defining ROI Boundaries: Since each participant reviewed 
the programs in full screen mode using monitors with the same 
resolution, we can select a singular screenshot for each question 
and assign region of interest boundaries to the image. In many 
code comprehension studies, the regions are defined using 
McCabe’s cyclomatic complexity metric which measures the 
number of linearly independent paths through a program module 
[6]. While useful, Regions defined in this manner often contain 
many lines of code and many unique lexical tokens which can 
lead to lackluster results, especially for instructors of 
introductory programming courses. By defining regions using a 
multi-line methodology, as seen in complexity-based 
definitions, instructors are unable to extract the more granular 
insights associated with these region boundaries. That is to say, 
comprehension insights extracted from these regions will not 
include the behavior exhibited within the region boundaries as 
well as the fixations that occur outside of these boundaries. 

To automatically define more granular regions of interest, 
the screenshots collected by NiCATS are first uploaded as an 
Amazon Web Services (AWS) S3 object. The S3 objects are 
then processed using the AWS Textract API. The Textract API 
is an Optical Character Recognition (OCR) service that accepts 
an image and returns the Line and Word boundaries detected of 
text contained within the image as well as the textual content 
contained within the region. 
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Fig. 5. Word based region of interest map (vertical lines indicate start and end 
of word) 

 

Fig. 6. Line based region of interest map (each line bounded by a box) 

Gaze Data to Fixations: Once the ROI maps are defined for 
each question, we process the raw gaze data in the context of the 
three ROI maps to extract the relevant eye metrics. 

1) Fixations: Fixations were calculated from the raw gaze 

data using the I-DT algorithm [20] with a 1° maximum 

dispersion and 300+ millisecond duration threshold. After the 

region boundaries are defined and fixation coordinates are 

extracted, the coordinate is boundary checked against each 

region of every region of interest map to check if the fixation is 

a hit or a miss.   

a) A hit refers to a fixation (shown as a solid circle) that 

occurred inside the boundaries, or within 1° (to account for 

accuracy error in the eye tracking hardware) of any region of 

interest in our predefined map (Fig. 7 and Fig. 8). 

b) A miss refers to any fixation that lies outside the 

boundaries of all regions in our region of interest map (Fig. 9). 

Any fixation identified as a hit is stored in the database and any 

fixation identified as a miss is omitted. The miss fixations are 

omitted because these regions contain no text which means, in 

this experiment setting, that this fixation is not aiding the 

student with their comprehension. 

2) Additional Metrics: Using the results of the hit/miss 

boundary detection, we calculate several essential metrics to be 

used in our analysis. On a participant to question level, we 

calculate the following with respect to each ROI. 

a) Average Fixation Duration: The total fixation time for 

an ROI divided by the number of fixations in that ROI. 

b) Number of Fixations: The total number of times a 

participant fixated in an ROI. This is a common metric used in 

eye tracking studies as an indicator of how much visual 

attention is required to comprehend the information [4]. 

c) ROI transition frequency: Calculated as the most 

frequently occurring fixation transition paths between ROIs 

between  the entire sample population. Fixation transitions 

provide insight into the links made by the participants between 

regions of interest. This provides insight into the ordering for 

which ROIs were used by the students to comprehend portions 

of the code base.  

 
Fig. 7. Fixation hit (Direct) 

 
Fig. 8. Fixation hit (1° offset) 

 

Fig. 9. Fixation Miss 

V. RESULTS AND DISCUSSION 

We performed qualitative analyses of the results in the 
context of individual students and across the entire population in 
order to extract insights related to the comprehension processes 
of the students. 

Using the extracted fixation durations for each region of 
interest (both the Line based map and the Word based map), 
instructors can use the generated fixation duration overlay to 
gain insight into the comprehension difficulty of each region of 
interest. Fig. 10 and Fig. 11 illustrate these fixation durations for 
all participants on a cropped code sample used in the 
experiment. Instructors reviewing the Line based graphic can 
quickly identify that students spent significantly more time 
fixating on the lines contained within the for loop (indicated by 
a darker highlighted region). Further review of these fixation 
durations using the Word based ROI map indicates which 
specific words in these Line based regions were most frequently 
fixated. 
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Fig. 10. Fixation Duration density on Line based ROI map 

 
Fig. 11. Fixation Duration density on Word based ROI map 

In the previous example, due to the experience level of the 
students as well as the nature of looping concepts in 
programming, the results for the distribution of these fixation 
durations were expected. That is to say, for both the Line and 
Word based ROI maps, the researchers expected to find longer 
fixation durations in the regions contained within the for loop.  

In addition to the fixation duration distributions, instructors 
also have the ability to view the transition frequencies of 
dynamic length between ROIs on an individual and classroom 
level. By reviewing these transitions, instructors can identify 
which regions students are using as well as the ordering of these 
regions, to evaluate how students are comprehending the 
material.  

In the context of the above example, it was found that the 
most frequently occurring fixation transition sequence for all 
participants also occurred within this for loop. The output 
generated by the program using the Line based ROI map with 
n=3 is shown in Table 1, whereas Table 2 shows the output 
generated using the Word based ROI map with n=3. Reviewing 
the results of these ROI transitions, the instructor can see that, 
on a Line level, students frequently transitioned between the for 
loop declaration statement, and the following line. Instructors 
can then make data driven insights that students were following 
the iterative procedure of the for loop to determine if any errors 
existed in these regions. Additionally, a review of the transitions 
at the Word level indicate that the students most frequently 
transitioned between wallet.length (an upper boundary control 
for limiting the number of loop iterations) and i++ (the 

incrementing value for the loop). This is an indicator that 
students were frequently checking the control parameters of the 
for loop as they attempted to identify any existing errors in the 
loop. 

TABLE I.  MOST FREQUENTLY OCCURRING ROI TRANSITION BETWEEN 

ALL STUDENTS (LINE BASED: N=3) 

ROI Text Frequency 

1. for (int i = 0; i <= wallet.length; i++)   

2. if (i < numPennies) wallet[i] = new Penny();        

3. for (int i = 0; i <= wallet.length; i++) 

35 

TABLE II.  MOST FREQUENTLY OCCURRING ROI TRANSITION BETWEEN 

ALL STUDENTS (WORD BASED: N=3) 

ROI Text Frequency 

1. wallet.length; 

2. i++) 
3. wallet.length; 

35 

 

The assessment of these results using only the previously 
discussed outputs is an indicator that the students, in general, 
were all comprehending the for loop correctly. By following the 
for loop iteratively while checking boundary conditions for the 
loop itself, students indeed understand the looping concepts well 
enough to identify certain runtime errors that may exist. To 
validate this, the quiz responses containing the line number and 
explanation for each identified error were evaluated to see if any 
student reported an error in the four lines used in the for loop. It 
was found that no student reported an error in any of these 
regions. 

VI. LIMITATIONS AND SUMMARY OF RESULTS 

The results of this approach do have some limitations that 
must be addressed. While using the AWS Textract API to 
automatically define regions of interest does eliminate a 
significant amount of the manual work required in previous 
NiCATS experiments, Textract does not always accurately 
identify the regions contained in the image. For example, in Fig.  
11 we can see that the region boundaries for main(String[] are 
cut off where the leftmost boundary of this word divides the 
letter m in half. The result of this accuracy error outputs the word 
nain(String[] instead of the true text that should have been 
included. Another example not shown in these figures consists 
of an error where the Line based detection does not always 
include all of the necessary text to define the region in its 
entirety. This was a common occurrence for regions where 2 or 
more spaces were present between words.  

Another limitation of this study was the experience level of 
the participant. The average score for the test results across the 
student population was 35.94% which indicates that many of the 
students struggled with identifying errors in the code.  

These limitations could have a significant impact on the 
interpretation of the results if the data is analyzed without the 
context of the screenshot. However, for this study, we are able 
to review the screenshot to visually identify where these errors 
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exist and the errors can be accounted for when reviewing the 
results.  

To summarize the results, it can be said that the method used 
for defining regions of interest has a significant impact on the 
way the results can be interpreted by an instructor. The findings 
in this research show that using multi-layered ROI maps can 
provide instructors with unique insights into the cognitive 
processes of students that are heavily influenced by the 
methodologies used for defining the ROI map initially. Using a 
Line based definition, we were able to see that students had more 
difficulty comprehending the for loop than any other regions in 
the code (as seen by the Line based fixation duration) which was 
further supported by the most frequently occurring fixation 
transitions for this ROI map. Using the Word based definition, 
it was found that students had most difficulty comprehending 
two of the words bounded by these Line based regions (one in 
each row), however, when reviewing the transition frequency 
for this code sample, the results indicate that the most frequently 
occurring transition was not between the two lines of code, but 
between two Words located within the same line of code. To 
summarize these results, it can be concluded that using various 
ROI definitions provides essential information needed to 
identify and assess the comprehension patterns of students doing 
code review tasks. 

VII. CONCLUSION AND FUTURE WORK 

This paper presents the investigation, design, analysis, and 
results of an exploratory work for the developing an automated 
pedagogical toolset for assessing student comprehension while 
performing code review tasks. This methodology is an 
expansion to our existing NiCATS application through the 
addition of a comprehension analysis toolset which can be used 
by instructors to evaluate student performance.  

The novel contribution of this paper is the expansion of the 
NiCATS data collection system to accommodate instructors by 
providing pedagogical tools for use in comprehension 
assessments. Another novel contribution is through the use of 
multi-layered ROI mapping mechanisms to provide user-
defined, granular insights about student comprehension patterns 
that are not presently available in state of the art educational 
tools. This research could be invaluable to instructors seeking a 
quick solution for identifying key points of misunderstanding 
among their students. By identifying these problem areas early 
on, instructors can use this information to design educational 
interventions in order to improve student knowledge acquisition 
and knowledge retention. 
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