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Abstract

Instructors often use facial cues of their students
as key indicators of student attention levels. However,
this method can pose a problem in online and
computer-based learning environments. While other
research has shown computer vision and eye-tracking
could be used with machine learning techniques to
predict attentiveness, they have shown only moderate
success in terms of accuracy. In this work, we
improve upon existing techniques for student attention
tracking. We employed our previously developed
Non-Intrusive Classroom Attention Tracking System
(NiCATS) to collect facial images and eye-tracking
data of students during three controlled experiments
that represent common academic scenarios. Our first
contribution is using convolutional neural networks
to predict student attentiveness with an F1-Score of
0.91. Our second contribution is the validation of
using eye-tracking metrics in conjunction with machine
learning models to predict the attentiveness of students
with up to 0.78 F1-Score, which could be useful when
webcam privacy is a concern.

Keywords: Eye-Tracking, Computer Vision,
Education Technology, Machine Learning,
Attention

1. Introduction

Understanding student attentiveness in classroom
settings has always been a critical factor in improving
the educational process. Traditionally, educators
gauge student attention via direct observation or
through feedback methods such as questionnaires
and interviews. However, these methods can
be time-consuming and disruptive. In traditional

classrooms, it is easier for educators to detect inattention
in students by observing their behavior and body
language, but computer-based classrooms can present
much more of a challenge. With the advent of online
learning, students may be attending classes from various
locations, which introduces more complex difficulties
for instructors attempting to gauge the attention levels
of their audience. Thus, as educational technologies
continue to evolve, there is a growing interest in
developing automated methods to monitor and assess
student attentiveness. The urgency of this demand is
further highlighted by studies demonstrating students’
limited attention spans, with evidence suggesting that
student attention levels drop only 10-30 minutes into a
lecture (Young et al., 2009).

With the advent of artificial intelligence (AI) and
machine learning (ML), many researchers have started
to explore their potential in the context of education. In
particular, convolutional neural networks (CNNs) have
shown promise in a variety of image recognition tasks
and, on the other hand, eye-tracking has been used to
gain insight into cognitive processes such as attention
and focus. Our research leverages these techniques to
provide instructors with feedback about the perceived
facial attentiveness of their students throughout the
course of their lectures. By providing instructors
with access to the attention levels of their students
during their lecture, instructors can adjust the pace of
their lecture according to these metrics and introduce
interventions that may recapture the attention levels of
their audience.

Our contributions are two-fold. First, we have
improved upon our previously developed NiCATS
pedagogical data collection tool by improving the
performance of our CNN which predicts the perceived
facial attentiveness of student face images which



are captured via a webcam (Sanders et al., 2021).
This approach provides an indicator of perceived
facial attentiveness of students in a classroom,
offering valuable insights for educators about student
attentiveness during lectures. Second, we investigate
the use of eye-tracking data to predict perceived
facial attentiveness as an alternative approach when
compared to using facial recognition. Due to the
complexities that exist in the data collected by NiCATS,
we evaluate the performance of four ML models in this
context, including Random Forest, Logistic Regression,
Artificial Neural Network, and K-Nearest Neighbors, to
classify the eye metric data collected from our system
(e.g., fixations, saccades). Our results indicate that the
eye-metric models could serve as a suitable alternative
to predicting student attention levels, which may be
especially prevalent in settings where facial recognition
technology may be a potential privacy concern for
students in academia. These contributions demonstrate
the value of NiCATS in supporting pedagogy in
academic institutions.

The remainder of this paper is formatted as follows.
The background literature is reviewed in Section 2.
Section 3 provides an outline of the methodology.
Section 4 presents the results and analysis of our
findings. Section 5 provides a discussion of our results.
Section 6 describes our conclusions and future work.
Lastly, Section 7 provides our acknowledgments.

2. Background

The following section reviews the literature
related to tracking attention using computer vision,
eye-tracking, and other biometric data collection
hardware.

2.1. Computer vision and attention tracking

Using webcams with computer vision has been
previously used to classify attentiveness in classrooms.

Researchers have used images of student faces,
collected from videos recorded during a “Cognitive
Skills Training” experiment, to train a machine learning
model to predict whether or not a face appeared to be
engaged (Whitehill et al., 2014). Using this model, they
found it had a similar binary classification performance
to that of human classifiers. They also found that the
engagement labels produced by both humans and the
machine learning model had a moderate correlation with
task performance.

Computer vision algorithms can detect head
movements and posture to determine if a student is
facing the screen or if they are distracted, such as
looking down at their phone or talking to a classmate

(Feng et al., 2021). Furthermore, facial recognition
algorithms can identify whether a student is expressing
emotions such as confusion or boredom, providing
valuable information that could be used by teachers to
adjust their teaching methods in real-time (Tabassum
et al., 2020). By integrating computer vision technology
into classroom management systems, instructors could
have the ability to receive notifications or alerts when
students are distracted or disengaged, allowing them to
intervene quickly and keep students on track. The use of
computer vision in automated attention tracking offers
a non-intrusive and scalable solution to improving the
learning experience of students in computer classrooms.

2.2. Eye-tracking and attention tracking

Another promising approach to automated attention
tracking is through the use of eye-tracking technologies.
By tracking eye movements, it is possible to determine
whether a student is looking at the screen, as well as
where they are looking on the screen. Prior research
has shown that these data points can be invaluable when
predicting student attention levels (Veliyath et al., 2019),
causes for inattention (Rosengrant et al., 2011), and
detecting cognitive interference (Rizzo et al., 2022).
For example, if a student’s gaze wanders frequently or
fixates on non-class-related content, this could indicate
that they are not engaged in the lecture. Conversely, if
a student’s gaze remains fixed on the lecture materials,
this could suggest that the student is paying attention.

Research that uses eye-trackers commonly uses the
following eye-tracking terms. Gaze points are the
immediate direction of a person’s eyes at a given
point in time and are commonly represented in (X,Y)
coordinates with respect to the dimensions of their
computer monitor. Fixations are the stabilization of the
eye on part of the stimulus for a short period of time,
and that usually last between 200-300ms (Sharafi et al.,
2015). Saccades are the quick movements between
fixations that usually last around 50ms (Sharafi et al.,
2015).

2.3. Other attention tracking methods

Researchers have used the Kinect One full-body
motion sensor to build a feature set characterizing
the facial and body properties of students to build a
machine learning model that can predict attentiveness
with moderate success (Zaletelj and Košir, 2017).
Researchers have used smartwatches to track hand
motions and heart activity and built a high-accuracy
machine learning model for predicting attentiveness
(Zhu et al., 2017).



Figure 1. Example setup configuration

3. Methodology

The following section presents our methodology
for data collection, pre-processing, and training of our
classification models.

3.1. Non-intrusive classroom attention
tracking system

An author-developed data collection tool,
Non-Intrusive Classroom Attention Tracking System
(NiCATS) (Sanders et al., 2021), was developed to
collect data from students in computer-based classrooms
by using an eye tracker and a webcam. In this work,
each participating student was instructed to sit at a
computer that was equipped with a Tobii Eye Tracker
4c, and a Logitech C920 webcam. An example setup
configuration is shown in Figure 1.

In addition to setting up our hardware, we
preinstalled the Tobii Eye Tracker 4c drivers as
well as the NiCATS client software. NiCATS was
used to gather the subject’s facial images and eye
movements as students reviewed a pre-recorded lecture
on their computers. Following the data collection
session, we evaluated the system to 1) verify that the
system was capable of accurately capturing face images
and eye metrics and 2) identify strong correlations
between metrics that could potentially be used to
predict student attentiveness in the future. This
work was followed by additional data collection
experiments from various learning environments where
the face image data was used to train a Convolutional
Neural Network (CNN) to predict perceived student
attentiveness with 77% accuracy (Sanders et al.,
2022). Furthermore, a correlation analysis between the
attentiveness predictions made by our CNN and various

Figure 2. High-level architecture of the proposed

data pipeline

eye metrics was conducted which provided a strong
foundation for our research questions in this work. An
overview of the proposed NiCATS architecture, for the
purposes of answering the research questions in Section
3.2, is shown in Figure 2.

3.2. Research questions

The research questions we explore in this work are
as follows:

• RQ1: Can a convolutional neural network be
trained to predict perceived facial attentiveness
from face images with high accuracy?

As we, and others, had previously studied, machine
learning can be used to predict perceived facial
attentiveness from face images (Sanders et al., 2022,
Whitehill et al., 2014) with moderate accuracy (77%
accuracy from (Sanders et al., 2022), 0.72 Cohen’s κ
from (Whitehill et al., 2014). To improve upon previous
work, we utilized class weights to limit the biasing effect
of class imbalance on our convolutional neural network
model. To determine the effectiveness of our model



Figure 3. Overview of NiCATS CNN model (Sanders

et al., 2021)

we evaluate this in terms of accuracy, recall, precision,
AUC, AUPRC, and F1-Score.

• RQ2: Can eye tracking data be used to predict
perceived facial attentiveness?

Previous work has shown that gaze data from
eye trackers could be used to predict self-reported
attentiveness levels by students with moderate accuracy
(Veliyath et al., 2019). To work towards predicting
perceived facial attentiveness using eye tracking data,
we utilize fixation and saccade information to target
human-labeled perceived facial attentiveness. To
determine the effectiveness of our models we evaluate
them using accuracy, recall, precision, AUC, AUPRC,
and F1-Score.

3.3. Experiments

To answer our research questions, we used our
previously developed NiCATS data collection tool
to collect facial images and eye-tracking data from
students in a variety of controlled experiments.
Each controlled experiment was designed to emulate
scenarios that are commonly experienced by students,
allowing for data that is representative of real-world
settings.

Experiment 1 - pre-recorded lecture: Our first
experiment involved asking students to watch a
fifteen-minute pre-recorded lecture about software

faults. Then they were asked to take a pre-test
and post-test with questions related to the contents
presented in the lecture. The content of this lecture
was deliberately chosen so it would be unfamiliar to
the students such that data about the learning process
could be accurately measured for our analysis through
completing a pre-test, containing questions about the
unseen lecture contents, and an identical post-test,
which students completed after watching the lecture.
The NiCATS client software was used to record the
student data during the lecture so it could be used later
for post-hoc analysis. The purpose of this experiment
was to collect student information during the learning
process, emulating the common lecture scenario that
students are required to do.

Experiment 2 - code review: Our second
experiment involved asking students in an introductory
programming course to review fault-seeded Java code
for four minutes and locate, in an open-response
question, where the faults lie. We chose Java as the
programming language for this experiment as this was
the language that was familiar to all participants. Each
student reviewed four code samples of fault-seeded
Java code. Each code sample was seeded with common
faults experienced by students in the target classroom.
While students were reviewing the code sample, we
used our NiCATS client software to collect student data
during the code review so it could be used later for our
post-hoc analysis. The purpose of this experiment was
to collect student information during the application
of comprehension in a coding environment. This is
a common scenario for computer science students as
they are expected to be able to write and debug code,
especially for code that they did not write.

Experiment 3 - CS1 exam: Our third experiment
involved students taking a CS1 midterm exam while
the NiCATS client software collected their face images
and eye-tracking data. The goal of this experiment
was to collect student data during the application of
comprehension in an examination environment. The
exam included multiple-choice questions, open-answer
questions, and a coding portion where the students were
asked to create a program to complete a task. This
setting is common for computer science students as they
are asked to display their knowledge of what they have
learned in both question-answering and code writing.

3.4. Convolutional neural network model

Convolutional Neural Networks (CNN) are a type
of neural network model that is commonly used for



Figure 4. CNN model training history

image classification tasks. They are generally used
due to their superior performance in image feature
learning and classification as compared to other machine
learning models (Kumar and Rao, 2018). Face image
attentiveness classification provides a natural fit for the
use of convolutional neural networks.

To answer research question 1, we improved upon
our previously developed CNN model (Sanders et al.,
2022) by using class weights. The purpose of
class weights is to reduce the biasing effect of class
imbalance. The total number of trainable parameters
in our model is 3,052,129. Our total dataset was 8858
face images, of which 7,296 were labeled attentive, and
1,562 were labeled inattentive. The training-test split
was 80-20. Due to the class imbalance, class weights of
0.61 for attentive and 2.84 for inattentive were used.

The images were human labeled and all images
were labeled according to the Behavioral Engagement
Related to Instruction protocol (BERI) (Lane and Harris,
2015) on if they appeared “attentive” or “inattentive”.
For purposes of being included in the dataset, only
images that were fully labeled attentive or inattentive by
all three labelers were included. The labelers showed
moderate agreement with a Krippendorff Alpha of 0.48
in determining if an image appeared attentive or not. We
used a batch size of 32, with Adam as the optimizer.
To prevent overfitting, we utilized early stopping to

cut off the training of the model when the loss of the
validation set did not improve over ten epochs. Our
model trained for 46 epochs before stopping early. Our
model architecture is shown in Figure 3. The training
and testing loss, precision, recall, and AUPRC are
shown in Figure 4. The training set confusion matrix
is shown in Figure 5.

3.5. Eye tracking models

To answer our second research question, RQ2,
we compare the performance metrics of four machine
learning models, each with their own strengths with
respect to classifying student attentiveness based on
eye metric data: Random Forest, Logistic Regression,
Artificial Neural Networks (ANN), and K-Nearest
Neighbors (KNN).

To process the raw gaze data collected by
our eye tracking hardware, the Identification by
Dispersion-Threshold algorithm (IDT) algorithm is
applied (Salvucci and Goldberg, 2000). This is a popular
algorithm for identifying fixations and saccades from
raw gaze point data streams. The algorithm identifies
a threshold distance value that separates fixations from
saccades based on the dispersion of gaze points within
a specific time window. These metrics are further
processed to calculate features such as:



Figure 5. CNN model confusion matrix (validation

set)

• Average Occurrence Duration - The average
duration that a fixation/saccade occurred during a
5-second time window period.

• Number of Occurrences per Second - The number
of fixations/saccades per second that occurred
over a 5-second time window at 90Hz.

After processing the raw gaze data into these metrics,
the resulting data set is used to train our four candidate
machine learning models.

Random forest: The Random Forest model, an
ensemble learning method that leverages the use of
multiple decision trees (Ho, 1995), provides a promising
solution for handling complex interactions between
different eye metrics. The model is resilient to outliers
(Gunduz and Fokoue, 2015) and can effectively address
the issue related to class imbalances (Khoshgoftaar
et al., 2015). Importantly, the Random Forest model
offers feature importance scores, granting us insight into
which eye metrics significantly influence the prediction
of student attentiveness. For our hyper-parameters,
we set the number of trees to 100, which generally
offers a good balance between model performance and
computational efficiency, and the maximum depth of
these trees was limited to 5.

Figure 6. Overview of ANN model

Logistic regression: Logistic Regression, though a
simpler model, can be a highly effective solution
for binary classification tasks, aligning well with our
research goal of differentiating between attentive and
inattentive students. The model offers probabilities
as outputs, providing an easy-to-interpret measurement
of certainty in its predictions. Moreover, logistic
regression is less prone to overfitting, ensuring the
model generalizes well to unseen data.

Artificial neural network: Artificial Neural
Networks, due to their ability to capture non-linear
relationships within data, often cater to more complex
classification tasks. In cases where relationships
between eye metrics and attentiveness are non-linear
or involve high-dimensional interactions, ANNs could
outperform linear models. However, the inherent
complexity of ANNs may render the decision-making
process less interpretable.

Our model is shown in Figure 6. It has 18913
trainable parameters, uses Adam as the optimizer, and
utilizes early stopping to prevent overfitting. To limit
the biasing effect of imbalanced classes, we used class
weights of 0.814 for the majority class and 1.296 for the
minority class.

K-nearest neighbors: Lastly, the K-Nearest
Neighbors (KNN) model classifies new instances
based on their similarity to other instances within the



Table 1. CNN model performance comparison
Model Accuracy Precision Recall F1
CNN 1.0 0.77 0.85 0.88 0.86
CNN 2.0 0.96 0.92 0.90 0.91

training dataset. This non-parametric model can be
particularly effective when irregular decision boundaries
exist. The flexibility of KNN allows us to adjust the
model’s complexity and decision boundary by altering
the k parameter, enabling an effective balance of bias
and variance. For this work, we set this parameter to 30.
This means the model considers the 30 closest samples
to make a final prediction. This number was chosen to
ensure that the model is not overly sensitive to noise in
the data, which can be a problem when using a smaller
value for k.

4. Results

The following subsections provide an analysis of the
results from our experiment in the context of our two
research questions.

4.1. RQ1: CNN for predicting student
attentiveness

To evaluate the effectiveness of utilizing our
proposed Convolutional Neural Network (CNN)
model to predict students’ attentiveness based on
their facial cues during classroom sessions, we
conducted a comprehensive evaluation of the model’s
performance. The evaluation was carried out on
labeled validation data, and the metrics employed
were accuracy, precision, recall, AUC, AUPRC, and
F1-score. Although our preceding research yielded
encouraging outcomes for this task (Sanders et al.,
2022), further improvements were required to make
this a feasible approach for our target application
domain. To address our prior limitations, we introduced
a weighting scheme to our samples before initiating
the training process. The implementation of this
method was aimed at circumventing possible biases
within our model, wherein the class appearing more
frequently could skew the target predictions due to its
over-representation. A comparison of the performance
metrics of our initial model (termed ‘CNN 1.0’) and the
improved model (designated ‘CNN 2.0’) is provided in
Table 1.

Our new model, CNN 2.0, exhibits an accuracy
of 96%, indicating that it accurately predicted the
attentiveness levels of students in 96% of our validation
samples. The model also shows a precision of 0.92,
meaning that when it predicts a student as attentive, it

is correct 92% of the time. With a recall of 0.90, our
model correctly identifies 90% of all truly attentive
students. The F1-score, which is the harmonic mean
of precision and recall, stands at 0.91, indicating a
balanced performance between precision and recall.
When compared to our previous model, CNN 1.0, these
metrics illustrate a notable performance improvement
that underscores the significant advancements made
and reinforces the practicality and effectiveness
of employing CNN models for predicting student
attentiveness in educational settings.

4.2. RQ2: Eye-tracking for predicting student
attentiveness

The performance of our four candidate models
— Random Forest (RF), Logistic Regression (LOG),
Artificial Neural Network (ANN), and K-Nearest
Neighbors (KNN) — evaluated on eye-tracking data
to predict perceived facial attentiveness is displayed
in Table 2. The findings provide affirmative evidence
to our research question, substantiating the premise
that eye-tracking data can indeed be used to predict
perceived facial attentiveness. Firstly, the accuracy of
all four models, ranging from 0.68 to 0.69, indicates that
a significant portion of the predictions made by these
models are correct.

These results show a strong connection between
the eye-tracking data and perceived facial attentiveness.
This connection is further emphasized by the AUC
values, ranging from 0.70 to 0.71, which denote that all
four models have a good performance at distinguishing
between attentive and inattentive states. The precision
scores, which reflect the proportion of true positive
predictions among all positive predictions, range from
0.67 to 0.71. This relatively high precision across all
models indicates a low false-positive rate, implying that
when the models predict a student to be attentive, they
are usually correct. The recall scores, ranging from
0.85 to 0.93, demonstrate that a high proportion of
truly attentive instances were correctly identified by the
models, further supporting the viability of eye-tracking
data for this prediction task. The F1-scores, which
serve as a balanced measure of precision and recall,
reinforce the balanced performance of the models,
showing that they are not biased towards either precision
or recall. The AUPRC values, ranging from 0.75
to 0.77, demonstrate the effectiveness of the models
at differentiating between attentive and inattentive
students, especially in contexts where the classes may
be imbalanced.



Table 2. Performance comparison of eye-metric classifiers
Model Accuracy Precision Recall AUC AUPRC F1
RF 0.69 0.69 0.87 0.71 0.77 0.77
LOG 0.69 0.69 0.88 0.71 0.76 0.78
ANN 0.68 0.67 0.93 0.70 0.76 0.76
KNN 0.69 0.71 0.85 0.70 0.75 0.77

5. Discussion of results

This paper presents a comprehensive exploration of
the applicability of computer vision and eye-tracking
technology in predicting student attention levels in
a classroom setting. We sought to address two
primary research questions. Firstly, we investigated the
feasibility of training a Convolutional Neural Network
(CNN) to predict perceived facial attentiveness from
webcam-captured images with high accuracy. We found
that CNNs, due to their capability to hierarchically
extract and learn features from image data, are indeed
proficient at this task. This contributes significantly
to the educational landscape by providing educators
with a reliable indicator of student attentiveness. By
monitoring and adjusting teaching strategies based on
these attentiveness indicators, educators can foster an
enhanced learning environment, ensuring their content
resonates effectively with their audience.

Secondly, we delved into the potential of
eye-tracking data as a means of predicting perceived
facial attentiveness. To evaluate this, we employed a
variety of machine learning models including Random
Forest, Logistic Regression, Artificial Neural Networks,
and K-Nearest Neighbors. The results from each model
were largely promising and displayed comparable
performance metrics, thus affirming our research
proposition of the effectiveness of eye-tracking data in
predicting attentiveness. However, when selecting a
model for practical application, one should consider the
specific requirements of their educational setting. Each
model we investigated displayed subtle differences
in precision, recall, F1-score, and area under the
curve (AUC) values, suggesting that the “best” model
may vary depending on whether the priority lies with
precision, recall, or balanced consideration of both
alongside other metrics such as AUC.

6. Conclusion and future work

In conclusion, this research validates the practicality
of using both CNNs for image-based attentiveness
prediction, and machine learning models for predicting
attentiveness using eye-tracking data. We not only
improved the performance of the CNN classifier

originally used in NiCATS, but we also introduced
a methodology for predicting student attention levels
using only eye metrics with 69% accuracy.

Future work could progress in several directions.
While convolutional neural networks are great for image
classification, and artificial neural networks have shown
promise in eye-tracking data classification, they each
lack the ability to analyze intricate temporal patterns,
such as how a person’s facial expression evolves over
the course of a lecture. We recommend looking
into attention-based models or transformers (Vaswani
et al., 2023), which have become more popular machine
learning methods for learning nuances and applying
contextual information in sequential data.

Designing interventions based on attentiveness
feedback and assessing their impact on the learning
outcomes and overall student experience is another
logical step in this research area. One potential way to
accomplish this is to investigate the impact of additional
eye-tracking data on the predictive performance of our
approach, such as gaze paths and blink frequency. We
plan to apply dynamic time-warping clustering analysis
on students’ gaze paths to make statements about how
high performers optimize their scan path as compared to
low performers.

Given the encouraging results with eye-tracking
data, future work could be done to investigate the
application of similar methods to other physiological
data that can be non-intrusively collected. These
data sources have the potential to provide additional
or complementary information to eye-tracking and
image-based data, enriching the models’ capability to
predict attentiveness. Integrating multiple data sources
could pave the way for a comprehensive attentiveness
prediction system that dynamically adapts to individual
students’ responses, further optimizing the learning
experience.
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